http://jocg.org/index.php/jocg/issue/feedJournal of Computational Geometry2017-03-13T11:57:11-04:00Managing Editorsjocg@jocg.orgOpen Journal SystemsThe Journal of Computational Geometry (JoCG) is an international open access journal devoted to publishing original research of the highest quality in all aspects of computational geometry.<p>JoCG articles and supplementary data are freely available for download and JoCG charges no publishing fees of any kind.</p><p>All JoCG issues and articles are assigned a DOI. JoCG's data and content are safeguarded through <a href="/index.php/jocg/pages/view/backup">several backup mechanisms</a>.</p>http://jocg.org/index.php/jocg/article/view/289Approximating minimum-area rectangular and convex containers for packing convex polygons2017-03-13T11:57:10-04:00Helmut Altalt@mi.fu-berlin.deMark de Bergmdberg@win.tue.nlChristian Knauerchristian.knauer@uni-bayreuth.deWe investigate the problem of finding a minimum-area container for the disjoint packing of a set of convex polygons by translations. In particular, we consider axis-parallel rectangles or arbitrary convex sets as containers. For both optimization problems which are NP-hard we develop efficient constant factor approximation algorithms.2017-02-18T14:30:53-05:00Copyright (c) 2017 Journal of Computational Geometryhttp://jocg.org/index.php/jocg/article/view/295Towards plane spanners of degree 32017-03-13T11:57:11-04:00Ahmad Biniazahmad.biniaz@gmail.comProsenjit Bosejit@scs.carleton.caJean-Lou De Carufeljdecaruf@uottawa.caCyril Gavoillegavoille@labri.frAnil Maheshwarianil@scs.carleton.caMichiel Smidmichiel@scs.carleton.ca<p>Let $S$ be a finite set of points in the plane. In this paper we consider the problem of computing plane spanners of degree at most three for $S$.</p><ol><li>If $S$ is in convex position, then we present an algorithm that constructs a plane $\frac{3+4\pi}{3}$-spanner for $S$ whose vertex degree is at most 3. </li><li>If $S$ is the vertex set of a non-uniform rectangular lattice, then we present an algorithm that constructs a plane $3\sqrt{2}$-spanner for $S$ whose vertex degree is at most 3. </li><li>If $S$ is in general position, then we show how to compute plane degree-3 spanners for $S$ with a linear number of Steiner points.</li></ol>2017-03-13T11:48:39-04:00Copyright (c) 2017 Journal of Computational Geometry