AN EXPLICIT PL-EMBEDDING OF THE FLAT SQUARE TORUS INTO \mathbb{E}^3

Tanessi Quintanar

Abstract. We present an explicit PL-embedding of the flat square torus $T^2 = \mathbb{E}^2 / \mathbb{Z}^2$ into \mathbb{E}^3, with 40 vertices and 80 faces.

1 Introduction

In [4], Burago and Zalgaller proved that any connected compact polyhedral surface admitting a topological embedding, admits an isometric piecewise linear (PL) embedding into \mathbb{E}^3. Recall that a polyhedral surface is a 2-dimensional manifold endowed with a polyhedral metric, i.e., a metric such that every point has a neighborhood isometric to the neighborhood of the vertex of a cone in \mathbb{E}^3. A PL map is defined as follows:

Definition 1. Let S be a polyhedral surface. A map $f : S \to \mathbb{E}^3$ is said piecewise linear (PL) if S admits a triangulation such that the restriction of f to any triangle is linear, i.e., it preserves barycentric coordinates. The PL map f is piecewise distance preserving if S admits a triangulation such that the restriction to any triangle is distance preserving, i.e., $d_{\mathbb{E}^3}(f(x), f(y)) = d_S(x, y)$ for any x, y in a same triangle.

Note that once the triangulation T is given, the images of the vertices determine a unique PL map by extending linearly to the images of triangles of T in \mathbb{E}^3. A PL map $f : S \to \mathbb{E}^3$ is an embedding if it is an homeomorphism between S and $f(S)$. If S is compact, a PL embedding is a PL injective map.

The approach of Burago and Zalgaller’s result relies on the Nash-Kuiper C^1-embedding Theorem ([7, 6]) and their construction is not explicit for this reason (see [9] for a discussion). In addition to an initial PL-approximation of an almost C^1 isometric embedding, the construction of Burago-Zalgaller involves several subdivision steps so that the resulting triangulation is very large. Finding an explicit triangulation with few vertices appears a real challenge. Zalgaller investigated the question of how to construct explicit PL-embeddings of cylinders or flat tori and found a solution for long cylinders and long tori [10]. Recall that a flat torus is the quotient of the two-dimensional Euclidean plane by a lattice. It is called rectangular when the lattice itself is rectangular. The above construction of Zalgaller restricted to rectangular tori requires that the width is at least twice of its height. In this

*The results presented here are part of my PhD Thesis. I wish to express my gratitude towards the whole team of the Becca project and specially to my advisors Vincent Borrelli and Francis Lazarus for their help and support and Nina Amenta and Pascal Romon for their constructive remarks that allowed to improve this article. I also would like to thank the referees for their suggestions that helped to reorganize and to improve the paper.

1Institut Camille Jordan, Université Lyon1, quintanar@math.univ-lyon1.fr
Theorem 1. For any $\lambda \geq 1$ consider a rectangle $ABCD$ of sides 1 and λ. Denote by T_λ the polyhedral surface obtained by identifying the opposite sides \overline{AB} and \overline{DC}, \overline{AD} and \overline{BC}. Then, there is a triangulation of T_λ with 40 vertices admitting an (PL) isometric embedding into \mathbb{R}^3 which is linear on each face of the triangulation (See Figure 1).

Our PL-embedding is inspired by the corrugated C^1 isometric embeddings of the flat torus generated by the Convex Integration Theory and constructed in [1, 2]. Essentially, we construct PL corrugations along one side of the rectangle to introduce flexibility and to allow the identifications between the opposite sides. We show that five corrugations are enough to obtain a PL-isometric embedding. The corresponding number of vertices is 40. If the isometric constraint is dropped, it is known that the torus admits a PL-embedding with 7 vertices and that this number can not be reduced [5, 3]. The question of the minimum number of vertices of a PL isometric embedding of a flat torus is quite natural but probably very difficult.

In the next three sections we focus on the case $\lambda = 1$, that is the one of the square torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$. In section 2 we built a triangulation \mathcal{T} of T^2 with 40 vertices. In section 3 we describe a linear embedding of \mathcal{T} into \mathbb{R}^3. This linear embedding induces a PL map $F : T^2 \to \mathbb{R}^3$. In section 4, we show that the map F is isometric. This proves Theorem 1 for $\lambda = 1$. Section 5 is devoted to the generalisation of this proof to the $\lambda > 1$ case.

2 Triangulations of the square torus

In this section we describe a triangulation \mathcal{T} of the square torus. Let $\mathcal{D} := [0,1]^2$ be a fundamental domain of $\mathbb{R}^2/\mathbb{Z}^2$; Consider the following points in \mathcal{D}:
We now locate the points a'_0, b'_0, c'_0 and d'_0 by reflecting a_0, b_0, c_0 and d_0 through the line $y = \frac{1}{2}$, so that:

\[
\begin{align*}
 a'_0 &= \left(0, \frac{3 - 0.42\ell}{4}\right), & b'_0 &= \left(0, \frac{3 + 3.58\ell}{4}\right), \\
 c'_0 &= \left(\frac{1}{10}, \frac{3 - 0.02\ell}{4}\right), & d'_0 &= \left(\frac{1}{10}, \frac{3 + 0.02\ell}{4}\right)
\end{align*}
\]

Where ℓ is given by:

\[
\ell = \frac{\sqrt{0.3759 \sin \frac{\pi}{5}}}{10\sqrt{(0.189 - 0.11\sqrt{0.3759 \cos \frac{\pi}{5}})^2 + 0.003759 \sin^2 \frac{\pi}{5}}} \tag{1}
\]

For $i \in \{1, \ldots, 4\}$ we set $a_i := a_0 + \frac{i}{5}e_1$, ..., $d'_i = d'_0 + \frac{i}{5}e_1$ with $e_1 = (1, 0)$.

To generate a triangulation we start from the trapezoid $a_0b_0c_0d_0$ split along its diagonal a_0d_0. We add its reflexion through the line $x = \frac{1}{5}$. We also add the reflexion of these two trapezoids through the line $y = \frac{1}{2}$, obtaining trapezoids $a_i b_i c_i d_i$, $a_{i+1} b_{i+1} c_{i+1} d_{i+1}$ and $a'_i b'_i c'_i d'_i$, $a'_{i+1} b'_{i+1} c'_{i+1} d'_{i+1}$. We finally connect those trapezoids with vertical edges $a_i a'_i$, $b_i b'_i$, $c_i c'_i$ and $d_i d'_i$ together with the diagonals $a_i c'_i$, $a_{i+1} c'_{i+1}$, $b_i d'_i$ and $b_{i+1} d'_{i+1}$ (See Figure 2).

The triangulation \mathcal{T} is built from a pattern which consists of 8 triangles located on a vertical ribbon of width $\frac{1}{10}$ while the other triangles are obtained by reflexion or translation of these 8 triangles (See figure 2).

Each ribbon will be mapped into \mathbb{E}^3 to generate half of a PL corrugation (see Figure 3). Preserving the rotational symmetry of the embedding combined with the isometry constraints the geometry of the trapezoids $a_i b_i c_i d_i$. In fact, experimentally moving the points a_i, b_i, c_i and d_i easily breaks the isometry.
Figure 2: Triangulation \mathcal{T} of the fundamental domain \mathcal{D} and a vertical ribbon $[0, \frac{1}{10}] \times [0, 1]$.

3 PL embeddings of the flat torus

In this section we describe a linear embedding of the triangulation \mathcal{T} into \mathbb{E}^3. We denote by O the origin of \mathbb{E}^3 and we introduce the three following points of \mathbb{E}^3:

\[
\begin{align*}
\Omega_A &= \left(0, 0, \frac{1 - 0.42\ell}{4}\right) \\
\Omega_B &= \left(0, 0, \frac{1 - 3.58\ell}{4}\right) \\
\Omega_* &= \left(0, 0, \frac{1 - 0.02\ell}{4}\right)
\end{align*}
\]
(2)

We set $v(\theta) = (\cos \theta, \sin \theta, 0)$. We define a PL map $F : \mathbb{T}^2 \to \mathbb{E}^3$ by its image on every vertex of \mathcal{T} and extending by linearity on each face of \mathcal{T}:

\[
\begin{align*}
F(a_i) &= \Omega_A + r_A v\left(\frac{2i\pi}{5}\right) \\
F(b_i) &= \Omega_B + r_1 v\left(\frac{2i\pi}{5}\right) \\
F(c_i) &= \Omega_* + r_3 v\left(\frac{(2i+1)\pi}{5}\right) \\
F(d_i) &= \Omega_* + r_2 v\left(\frac{(2i+1)\pi}{5}\right)
\end{align*}
\]
\]
(3)

\[
\begin{align*}
F(a_i') &= -\Omega_A + r_A v\left(\frac{2i\pi}{5}\right) \\
F(b_i') &= -\Omega_B + r_1 v\left(\frac{2i\pi}{5}\right) \\
F(c_i') &= -\Omega_* + r_3 v\left(\frac{(2i+1)\pi}{5}\right) \\
F(d_i') &= -\Omega_* + r_2 v\left(\frac{(2i+1)\pi}{5}\right)
\end{align*}
\]
(3)
Figure 3: Left, view of a slice of $F(T^2)$, on the vertical axis z_A, z_B and z_* denote the vertical coordinates of Ω_A, Ω_B and Ω_*. Right, view from above of $F(T^2)$, the circles have radii $r_1 < r_2 < r_3 < r_4$.

for all $i \in \{0, \ldots, 4\}$ and where r_1, r_2, r_3 and r_4 are given by:

$$r_4 = \frac{\sqrt{1-\ell^2}}{10 \sin \frac{\pi}{5}}$$
$$r_3 = r_4 \cos \frac{\pi}{5} - 0.1\ell$$
$$r_2 = r_3 - c_0d_0 = r_3 - 0.01\ell$$
$$r_1 = r_4 - \sqrt{0.3759}\ell.$$

Note that the points $F(a_i)$, $i \in \{0, \ldots, 4\}$, lie in a circle of radius r_4 and of center Ω_A. Similarly, the points $F(b_i)$, $i \in \{0, \ldots, 4\}$, lie in a circle of radius r_1 and of center Ω_B, and so on. Note that $r_1 < r_2 < r_3 < r_4$ (See Figure 3).

Symmetry property of F: The image torus $F(T^2)$ has some revolution and reflection symmetries. Indeed, we define, for $i = 0, \ldots, 4$, the planes Π_i as follows:

$$\Pi_i : x \sin \left(\frac{i\pi}{5}\right) - y \cos \left(\frac{i\pi}{5}\right) = 0.$$

Let R_j be the rotation about the z-axis of angle $\frac{2j\pi}{5}$, and let S_j be the reflection through the plane Π_j. We claim that $F(T^2)$ is invariant under S_j and R_j for $j = 0, \ldots, 4$.

Proof of the claim: Let $v \in \{a, b, c, d, a', b', c', d'\}$, $p \in \{a, b, a', b'\}$ and $q = \{c, d, c', d'\}$. We remark that the list of triangles in T is invariant by the re-indexation $r_j : v_i \to v_{i+j}$.
and $s_j : p_i \rightarrow p_{j-i+5}$ and $s_j : q_i \rightarrow q_{j-i+4}$. From equation (3) we directly have that $R_j(F(v_i)) = F(v_{j+i}) = F(r_j(v_i))$. Moreover, we have $S_j(F(p_i)) = F(p_{j-i+5}) = F(s_j(p_i))$ and $S_j(F(q_i)) = F(q_{j-i+4}) = F(s_j(q_i))$. □

4 Proof of Theorem 1 for $\lambda = 1$

In this section, we prove that the PL map $F : T^2 \rightarrow \mathbb{R}^3$ described by equations (3) in Section 3 is an isometric embedding. To show that F is isometric, it is enough to prove that every triangle of T is mapped isometrically by F. In turn, this reduces to show that F preserves the lengths of the edges of the triangulation.

Proposition 1. The PL map $F : T^2 \rightarrow \mathbb{R}^3$ defined in equations (3) is isometric.

Proof. It is enough to prove that the length of every edge $[p, q]$ in T is preserved under F, i.e. $d_{T^2}(F(p), F(q)) = d_{\mathbb{R}^2}(p, q)$. To save space, we often write pq for $d_{T^2}(p, q)$ in this proof.

By the symmetry property of T and F, it is thus enough to prove that every edge in the first ribbon of T is preserved by F, that is $d_{T^2}(F(p_0), F(q_0)) = p_0q_0$ for all edge $[p_0, q_0]$ in T. Direct computations show that:

$$d_{T^2}^2(F(c_0), F(c_0′)) = \left(1 - \frac{0.02\ell}{2}\right)^2 = (c_0c_0′)^2$$

$$d_{T^2}^2(F(a_0), F(a_0′)) = \left(1 - \frac{0.42\ell}{2}\right)^2 = (a_0a_0′)^2$$

$$d_{T^2}^2(F(c_0), F(d_0)) = d_{T^2}^2(F(c_0′), F(d_0′)) = (r_3 - r_2)^2 = (c_0d_0′)^2 = (c_0d_0)^2$$

$$d_{T^2}^2(F(a_0), F(b_0)) = d_{T^2}^2(F(a_0′), F(b_0′)) = (r_4 - r_1)^2 + (0.79\ell)^2 = (a_0b_0′)^2$$

$$d_{T^2}^2(F(a_0), F(c_0)) = d_{T^2}^2(F(a_0′), F(c_0′)) = r_4^2 + r_3^2 - 2r_1r_3\cos\frac{\pi}{5} + (0.1\ell)^2$$

$$= (0.1)^2 + (0.1\ell)^2 = (a_0c_0′)^2 = (a_0c_0)^2$$

$$d_{T^2}^2(F(a_0), F(d_0)) = d_{T^2}^2(F(a_0′), F(d_0′)) = r_4^2 + r_2^2 - 2r_4r_2\cos\frac{\pi}{5} + (0.1\ell)^2$$

$$= (0.1)^2 + (0.11\ell)^2 = (a_0d_0′)^2 = (a_0d_0)^2$$

$$d_{T^2}^2(F(a_0), F(c_0′)) = r_3^2 + r_2^2 - 2r_4r_3\cos\frac{\pi}{5} + \left(1 - \frac{0.22\ell}{2}\right)^2$$

$$= (0.1)^2 + \left(1 - \frac{0.22\ell}{2}\right)^2 = (a_0c_0′)^2$$

$$d_{T^2}(F(b_0), F(b_0′)) = \left(1 - \frac{3.58\ell}{2}\right)^2 = \left(1 - \frac{1 + 3.58\ell}{2}\right)^2 = (b_0b_0′)^2.$$
To do so, we define angular sectors P_j for $j = 0, \ldots, 9$ using the 5 planes Π_i defined in equation (5). Let Γ_0 be the half-plane of Π_0 such that $x \geq 0$. We denote by Γ_i the vertical half-plane bounded by the z-axis and making an angle $\frac{i\pi}{9}$ with Γ_0 for $i=0, \ldots, 9$. We define

\[d_{E_3}(F(d_0), F(d_0')) = \left(\frac{1-0.02\ell}{2} \right)^2 = \left(1 - \frac{1+0.02\ell}{2} \right)^2 = (d_0d_0')^2 \]

\[d_{E_3}(F(b_0), F(d_0')) = r_1^2 + 2r_2^2 - r_1r_2 \cos \frac{\pi}{5} + \left(\frac{1-1.8\ell}{2} \right)^2 \]

\[= (0.1)^2 + \left(1-1.8\ell \right)^2 = (b_0d_0')^2 \]

Finally, we have

\[d_{E_3}(F(b_0), F(d_0)) = d_{E_3}(F(b_0), F(d_0')) = r_1^2 + r_2^2 - 2r_1r_2 \cos \frac{\pi}{5} + (0.89\ell)^2 \]

\[= (0.1)^2 + (0.89\ell)^2 + 2 \left[0.189\ell^2 - \sqrt{0.3759\ell} \left(r_1 - r_2 \cos \frac{\pi}{5} \right) \right] . \]

The value of ℓ given in (1) is such that $0.189\ell^2 - \sqrt{0.3759\ell} \left(r_1 - r_2 \cos \frac{\pi}{5} \right) = 0$, thus we have

\[d_{E_3}(F(b_0), F(d_0)) = (0.1)^2 + (0.89\ell)^2 = (b_0d_0')^2 = (b_0d_0)^2 \]

as desired. \hfill \Box

Proposition 2. The PL map $F : T^2 \to E^3$ is an embedding.

Proof. In this proof we often denote by A the point $F(a)$, by AB the segment $F(a)F(b)$, and by ABC the triangle $F(a)F(b)F(c)$. Let \mathcal{F} be the set of triangles contained in E^3 which are images of triangles in \mathcal{T}. This set contains 16 families of triangles given below $(i=0, \ldots, 4)$:

1. $A_iB_iD_i$
2. $A_iD_iC_i$
3. $B_iD_iD_i'$
4. $B_iB_i'D_i'$
5. $A_iC_iC_i'$
6. $A_i'C_i'A_i$
7. $A_i'B_i'D_i'$
8. $A_i'D_i'C_i'$
9. $C_iA_{i+1}D_i$
10. $D_iB_{i+1}A_{i+1}$
11. $C_i'A_{i+1}D_i'$
12. $D_i'A_{i+1}B_{i+1}'$
13. $D_iB_{i+1}D_i'$
14. $B_{i+1}D_i'B_{i+1}'$
15. $C_i'C_iA_{i+1}$
16. $C_i'A_{i+1}A_{i+1}$

It is readily checked that F is injective on the vertices of \mathcal{T}. Therefore, points A_i, B_i, \ldots, D_i' are all distinct. Moreover, it is straightforward to see that if $T \in \mathcal{F}$, then the vertices of T are not collinear.

The proof reduces to show that for every pair of triangles T_1, T_2, such that $T_1 = F(t_1)$ and $T_2 = F(t_2)$ are the images of distinct triangles t_1 and t_2 in \mathcal{T}, we have $T_1 \cap T_2 = F(t_1 \cap t_2)$, i.e., $T_1 \cap T_2$ is either the empty set or a common vertex or a common edge.

To do so, we define angular sectors P_j for $j = 0, \ldots, 9$ using the 5 planes Π_i defined in equation (5). Let Γ_0 be the half-plane of Π_0 such that $x \geq 0$. We denote by Γ_i the vertical half-plane bounded by the z-axis and making an angle $\frac{i\pi}{9}$ with Γ_0 for $i = 0, \ldots, 9$. We define
Figure 4: View from above of half-planes Γ_i and the sectors \mathcal{P}_j.

\mathcal{P}_i as the sector of angle $\frac{i\pi}{5}$ delimited by Γ_i and Γ_{i+1} for $i = 0, \ldots, 8$ and \mathcal{P}_9 the sector between Γ_9 and Γ_0 with angle $\frac{\pi}{5}$ (See figure 4).

The proof will consist in the following steps:

I. We show that for all $T \in \mathcal{F}$, $\hat{T} \subset \mathcal{P}_j$ for a unique $j = 0, \ldots, 9$.

II. We show that \mathcal{P}_j, for $j = 0, \ldots, 9$ contains exactly 8 triangles.

III. We show that for all 28 pairs of triangles (T_1, T_2) in \mathcal{P}_0 with $T_1 = F(t_1)$, $T_2 = F(t_2)$, we have that $T_1 \cap T_2 = F(t_1 \cap t_2)$. Due to the symmetry properties of \mathcal{T} and F, this result will prove that F is an embedding.

I.

Remark that the angular sectors \mathcal{P}_i are disjoint and that $\mathcal{P}_i \cap \mathcal{P}_{i+1} = \Gamma_{i+1}$. The half-planes Γ_{2i} and Γ_{2i+1} contain respectively A_i, B_i, A'_i and B'_i and C_i, D_i, C'_i and D'_i. Since in the list of triangles in \mathcal{F} there are no triangles whose vertices are all contained in a single Γ_i, there is no triangle contained in $\mathcal{P}_i \cap \mathcal{P}_{i+1}$. Note that the endpoints of each edge of $F(\mathbb{T}^2)$ either have the same index i, or have consecutive indexes i and $i+1$. It follows that each edge is contained in some \mathcal{P}_i therefore each triangle interior is contained in some \mathcal{P}_i.

II.
Since there are 80 triangles in \mathcal{T} and 10 angular sectors \mathcal{P}_i, by symmetry we conclude that each \mathcal{P}_i contains exactly 8 triangles. Then for the symmetry properties of \mathcal{T} and \mathcal{F} we have that it is enough to show that $\mathcal{T}_1 \cap \mathcal{T}_2 = F(t_1 \cap t_2)$ for every pair of triangles \mathcal{T}_1 and \mathcal{T}_2 contained in \mathcal{P}_0. We note that the following 8 triangles are contained in \mathcal{P}_0.

1. $A_0B_0D_0$
2. $A_0D_0C_0$
3. $B_0D_0D'_0$
4. $B_0B'_0D'_0$
5. $A_0C_0C'_0$
6. $A'_0C'_0A_0$
7. $A'_0B'_0D'_0$
8. $A'_0D'_0C'_0$

III.

Since we have 8 triangles, we have 28 pairs of triangles to verify, now, since there is also a (combinatorial) symmetry through the plane $z = 0$, we reduce to 6 triangles and then we have only 15 pairs to verify. We denote by ABC the triangle $A_0B_0C_0$. We use the enumeration of the list of triangles for a triangle in \mathcal{F}. The 6 triangles to verify are triangles (1)-(6)

Pairs (1)-(4), (2)-(4):

Take the plane P_1 whose equation is

\[P_1 : z = \frac{1 - 3.58\ell}{4}. \]

The third coordinate of B' and D' is negative (and thus lesser than $\frac{1-3.58\ell}{4}$) and the third coordinate of A, B, C and D are greater than $\frac{1-3.58\ell}{4}$ (or equal for the case B), we have then that triangles ABD and ADC are in one side of the plane P_1 and the triangle $BB'D'$ is in the other side of P_1. This shows that $ABD \cap BB'D' = B = F(abd \cap bb'd')$ and $ACD \cap BB'D' = \emptyset = F(acd \cap bb'd')$ as required.

Pair (2)-(6):
Take the plane P_2 with equation

\[P_2 : z = \frac{1 - 0.42\ell}{4}. \]

Since the third coordinate of A, C and D is greater or equal than $\frac{1-0.42\ell}{4}$ and the third coordinate of A, A' and C' is lesser or equal than $\frac{1-0.42\ell}{4}$, the triangles ACD and $A'C'A$ are on opposite sides of the plane P_2, so $ACD \cap A'C'A = A = F(acd \cap a'c'a)$ as required.

Pairs (3)-(5), (4)-(5), (3)-(6) and (4)-(6):
Let M be the medium point of CD and M' the medium point of $C'D'$. Take the plane P_3 passing through M and M' and such that the segment CD is normal to P_3. The equation of P_3 is given by

\[P_3 : x \cos \frac{\pi}{5} + y \sin \frac{\pi}{5} - \frac{r_2 + r_3}{2} = 0. \]

We have that A and C are on one side of P_3 and B and D on the opposite side of P_3. Since the first coordinate of A', B', C' and D' is equal as the first coordinate of A, B, C and D
respectively, we have that triangles $BD'D$ and $B'D'B$ are on one side of P_3 and the triangles ACC' and $A'C'A$ are on the other side of P_3. Then, $ACC' \cap BD'D = ACC' \cap B'D'B = A'C'A \cap BD'D = A'C'A \cap B'D'B = \emptyset = F(acc' \cap bd'd) = F(acc' \cap b'd'b) = F(a'c'a \cap bd'd) = F(a'c'a \cap b'd'b)$ as desired.

Pairs (1)-(5), (1)-(6):
Let P_4 be the plane passing through the points A, A' and M. The equation of P_4 is given by

$$P_4 : x \sin \frac{\pi}{5} + y \left(\frac{2r_4}{r_3 + r_2} - \cos \frac{\pi}{5}\right) - r_4 \sin \frac{\pi}{5} = 0.$$

The coordinates of D and B verify $x \sin \frac{\pi}{5} + y \left(\frac{2r_4}{r_3 + r_2} - \cos \frac{\pi}{5}\right) - r_4 \sin \frac{\pi}{5} < 0$. The coordinates of C and C' verify $x \sin \frac{\pi}{5} + y \left(\frac{2r_4}{r_3 + r_2} - \cos \frac{\pi}{5}\right) - r_4 \sin \frac{\pi}{5} > 0$. This shows that ADB is on one side of P_4 and $A'C'A$ and ACC' are on the other side of P_4. That means that $ABD \cap A'C'A = ABD \cap ACC' = A = F(abd \cap a'c'a) = F(abd \cap acc').$

Pair (2)-(3):
Take the plane P_5 passing by D and D' and normal to CD. The equation of P_5 is given by

$$P_5 : x \cos \frac{\pi}{5} + y \sin \frac{\pi}{5} - r_2 = 0.$$

We have then that the triangle ACD is on one side of P_5 and $BD'D$ is on the other side of P_5, this implies that $ACD \cap BD'D = D = F(acd \cap bd'd)$.

Pairs (1)-(3), (3)-(4), (5)-(6):
If P_6 is the plane passing through B, B' and D (and D'), the equation describing P_6 is given by

$$P_6 : x \sin \frac{\pi}{5} + y \left(\frac{r_1}{r_2} - \cos \frac{\pi}{5}\right) - r_1 \sin \frac{\pi}{5} = 0.$$

The coordinates of A satisfy $x \sin \frac{\pi}{5} + y \left(\frac{r_1}{r_2} - \cos \frac{\pi}{5}\right) - r_1 \sin \frac{\pi}{5} > 0$. That means that $BD'D$ and ABD are in different planes and since they share the edge BD we have that $BD'D \cap ABD = BD = F(bdl' \cap abd)$. The triangles $BD'D$ and $B'D'B$ are on the plane P_6. Since D and B' are on opposite sides of the line of P_6 containing the segment BD', we conclude that $BD'D \cap B'D'B = BD' = F(bdl' \cap b'd'b)$. Observe that A, A', C and C' are coplanar and so are ACC' and $A'C'A$. In their common plane, A' and C lie on opposite sides of the line containing the segment AC' we have that $ACC' \cap A'C'A = AC' = F(acc' \cap a'c'a)$.

Pairs (1)-(2), (2)-(5):
Take the plane P_7 passing by A, D and C. The equation of this plane is given by:

$$P_7 : x 0.1 \ell \sin \frac{\pi}{5} - y 0.1 \ell \cos \frac{\pi}{5} + z r_4 \sin \frac{\pi}{5} - \frac{r_4(1 - 0.02\ell)}{4} \sin \frac{\pi}{5} = 0.$$
\[B \text{ and } C' \text{ verify that } x \cdot 0.1 \ell \sin \frac{\pi}{5} - y \cdot 0.1 \ell \cos \frac{\pi}{5} + z \cdot r_4 \sin \frac{\pi}{5} - \frac{r_4(1 - 0.02\ell)}{4} \sin \frac{\pi}{5} > 0 \text{ so } ACD \text{ and } ABD \text{ are in different planes. Since they share } AD \text{ the triangles only intersect in that edge. The same happens with the triangles } ACD \text{ and } ACC'. \text{ We have proved then that } ACD \cap ABD = AD = F(acd \cap abd) \text{ and that } ACD \cap ACC' = AC = F(acd \cap acc'). \]

We conclude that \(T_1 \cap T_2 = F(t_1 \cap t_2) \) for every pair of triangles \(T_1 \) and \(T_2 \) contained in \(F \).

\section{Proof of Theorem 1 for \(\lambda > 1 \)}

This proof is an adaptation of the proof for the case \(\lambda = 1 \). In fact, elongating \(F(\mathbb{T}^2) \) vertically in \(\mathbb{E}^3 \) will change the internal angles of the triangles. As a result, the total angles at the vertices will differ from \(2\pi \) so that the elongated surface will not be flat anymore. To embed a rectangular torus isometrically and piecewise linearly in \(\mathbb{E}^3 \) we take the polyhedron \(F(\mathbb{T}^2) \) defined in section 3 and we intersect it with the plane \(z = 0 \). This plane divides \(F(\mathbb{T}^2) \) in two parts, \(F_1 \) contained in the space \(z > 0 \) and \(F_2 \) contained in the space \(z < 0 \). Let \(\beta > 0 \), we cut \(F(\mathbb{T}^2) \) through this plane and we translate \(F_1 \) vertically by the vector \((0,0,\beta)\) and \(F_2 \) by the vector \((0,0, -\beta)\) with \(\beta > 0 \). We replace the cut triangles \(A_iC_iC_i' \), \(A'_iC'_iA_i, \) \(D_iB_iD_i' \) and \(D'_iB'_iB_i \) by new triangles \(A_{i,\beta}C_{i,\beta}C_{i,\beta}', A'_{i,\beta}C'_{i,\beta}A_{i,\beta}, \) \(D_{i,\beta}B_{i,\beta}D_{i,\beta}' \) and \(D'_{i,\beta}B'_{i,\beta}B_{i,\beta} \) where for \(X \in \{A, A', B, B', C, C', D, D'\} \), \(X_{i,\beta} \) denotes \(X_i = (0,0,\beta) \) or \(X_i = -(0,0,\beta) \) according to whether \(X_i \) belongs to \(F_1 \) or \(F_2 \). Observe that the resulting embedded torus remains flat.

The coordinates of \(X_{i,\beta} \) are the given by:

\[
\begin{align*}
A_{i,\beta} &= \Omega_{A,\beta} + r_4 v \left(\frac{2\pi}{5} \right) \\
B_{i,\beta} &= \Omega_{B,\beta} + r_1 v \left(\frac{2\pi}{5} \right) \\
C_{i,\beta} &= \Omega_{*,\beta} + r_3 v \left(\frac{2\pi}{5} \right) \\
D_{i,\beta} &= \Omega_{*,\beta} + r_2 v \left(\frac{2\pi}{5} \right)
\end{align*}
\]

where \(v(\theta) = (\cos \theta, \sin \theta, 0) \), \(r_i \) are given as in equation 4 and:

\[
\begin{align*}
\Omega_{A,\beta} &= \left(0, 0, \frac{1 - 0.42\ell}{4} + \beta \right) \\
\Omega_{B,\beta} &= \left(0, 0, \frac{1 - 3.58\ell}{4} + \beta \right) \\
\Omega_{*,\beta} &= \left(0, 0, \frac{1 - 0.02\ell}{4} + \beta \right)
\end{align*}
\]

Let \(T_\lambda \) be a rectangular flat torus of sides 1 and \(\lambda = 1 + 4\beta \) with triangulation isomorphic to the square case (see Figure 5), changing the vertex coordinates to:

\[
\begin{align*}
a_0 &= \left(0, \frac{1 + 0.42\ell + 4\beta}{4} \right), \quad b_0 = \left(0, \frac{1 - 3.58\ell + 4\beta}{4} \right), \\
c_0 &= \left(\frac{1}{10}, \frac{1 + 0.02\ell + 4\beta}{4} \right), \quad d_0 = \left(\frac{1}{10}, \frac{1 - 0.02\ell + 4\beta}{4} \right)
\end{align*}
\]
\[a'_0 = \left(0, \frac{3 - 0.42\ell + 12\beta}{4} \right), \quad b'_0 = \left(0, \frac{3 + 3.58\ell + 12\beta}{4} \right), \]
\[c'_0 = \left(\frac{1}{10}, \frac{3 - 0.02\ell + 12\beta}{4} \right), \quad d'_0 = \left(\frac{1}{10}, \frac{3 + 0.02\ell + 12\beta}{4} \right), \]

We define the PL map \(F_\lambda \) in a similar way as in Section 2, \(F_\lambda : T_\lambda \to \mathbb{R}^3 \) as:

\[
F_\lambda(a_i) = \Omega_{A,\beta} + \frac{r_4}{4} v \left(\frac{2\pi}{5} \right) \quad F_\lambda(a'_i) = -\Omega_{A,\beta} + \frac{r_4}{4} v \left(\frac{2\pi}{5} \right)
\]
\[
F_\lambda(b_i) = \Omega_{B,\beta} + \frac{r_1}{4} v \left(\frac{2\pi}{5} \right) \quad F_\lambda(b'_i) = -\Omega_{B,\beta} + \frac{r_1}{4} v \left(\frac{2\pi}{5} \right)
\]
\[
F_\lambda(c_i) = \Omega_{+\beta} + \frac{r_3}{4} v \left(\frac{(2i+1)\pi}{5} \right) \quad F_\lambda(c'_i) = -\Omega_{+\beta} + \frac{r_3}{4} v \left(\frac{(2i+1)\pi}{5} \right)
\]
\[
F_\lambda(d_i) = \Omega_{+\beta} + \frac{r_2}{4} v \left(\frac{(2i+1)\pi}{5} \right) \quad F_\lambda(d'_i) = -\Omega_{+\beta} + \frac{r_2}{4} v \left(\frac{(2i+1)\pi}{5} \right)
\]

To show that this map is isometric it is enough to proof that the length of every edge in the triangulation of \(T_\lambda \) is preserved under \(F_\lambda \). Similar computations as in the proof of the square case show that this is indeed the case.

Remark. It is possible to adapt the construction presented in this paper to build PL embeddings with 6 or more corrugations. This obviously increases the number of vertices, edges and faces of the triangulation, see Figure 6 and [8] for more details.

References

Figure 5: Triangulation of a flat rectangular torus.

Figure 6: \(PL \) isometric embeddings of the square flat torus with 6, 10 and 30 corrugations.