# The Hausdorff core problem on simple polygons

### Abstract

A polygon \(Q\) is a \(k\)-bounded Hausdorff Core of a polygon \(P\) if \(P\) contains \(Q\), \(Q\) is convex, and the Hausdorff distance between \(P\) and \(Q\) is at most \(k\). A Hausdorff Core of \(P\) is a \(k\)-bounded Hausdorff Core of \(P\) with the minimum possible value of \(k\), which we denote \(k_{\min}\). Given any \(k\) and any \(\varepsilon\gt 0\), we describe an algorithm for computing a \(k'\)-bounded Hausdorff Core (if one exists) in \(O(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2}))\) time, where \(k'\lt k+d_{\text{rad}}\cdot\varepsilon\) and \(d_{\text{rad}}\) is the radius of the smallest disc that encloses \(P\) and whose center is in \(P\). We use this solution to provide an approximation algorithm for the optimization Hausdorff Core problem which results in a solution of size \(k_{\min}+d_{\text{rad}}\cdot\varepsilon\) in \(O(\log(\varepsilon^{-1})(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2})))\) time. Finally, we describe an approximation scheme for the \(k\)-bounded Hausdorff Core problem which, given a polygon \(P\), a distance \(k\), and any \(\varepsilon\gt 0\), answers true if there is a \(((1+\varepsilon)k)\)-bounded Hausdorff Core and false if there is no \(k\)-bounded Hausdorff Core. The running time of the approximation scheme is in \(O(n^3+n^2\varepsilon^{-4}(\log n+ \varepsilon^{-2}))\).
Published

2014-02-17

How to Cite

*Journal of Computational Geometry*,

*5*(1), 14–40. https://doi.org/10.20382/jocg.v5i1a2

Issue

Section

Articles

Authors who publish with this journal agree to the following terms:

- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.

- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.

- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).