A new algorithm for computing visibility graphs of polygonal obstacles in the plane
Abstract
Given a set of $h$ pairwise disjoint polygonal obstacles with a total of $n$ vertices in the plane, the vertex-vertex visibility graph is an undirected graph whose nodes are vertices of the obstacles and whose edges are pairs of visible vertices. The vertex-edge and edge-edge visibility graphs are defined similarly. Ghosh and Mount gave a well-known output-sensitive $O(n\log n+k)$ time algorithm for computing these visibility graphs, where $k$ is the size of the corresponding graph. By developing new techniques based on an extended corridor structure, we augment Ghosh and Mount’s algorithm to build these visibility graphs in $O(n+h\log h+k)$ time, after the free space is triangulated. The new algorithm improves Ghosh and Mount’s algorithm by reducing its additive $O(n\log n)$ time factor to $O(n + h\log h)$. Like Ghosh and Mount’s algorithm, our algorithm can also compute several important structures such as the funnel structure and the enhanced visibility graph, which may have other applications.
Published
2015-12-21
How to Cite
Chen, D. Z., & Wang, H. (2015). A new algorithm for computing visibility graphs of polygonal obstacles in the plane. Journal of Computational Geometry, 6(1), 316–345. https://doi.org/10.20382/jocg.v6i1a14
Issue
Section
Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).